

辅酶 I NAD(H)含量检测试剂盒(可见分光光度法)(WST 显色法)

中文名称:辅酶 I NAD(H)含量检测试剂盒(WST 显色法)

英文名称: Coenzyme I NAD(H) Content Assay Kit (WST colorimetry)

储存条件 : -20℃

产品包装 : 盒装

检测方法: 可见分光光度法

有效期:6个月

产品规格: 50T/24S

产品组成:

试剂名称	规格	保存条件
酸性提取液	液体 15mL×1 瓶	2-8℃保存
酸性提取液	液体 15mL×1 瓶	2-8℃保存
试剂一	液体 20mL×1 瓶	2-8℃保存
试剂二	液体 6mL×1 瓶	2-8℃保存
试剂三	液体 12mL×1 瓶	2-8℃保存
试剂四	液体 3mL×1 瓶	-20℃保存
试剂五	液体 40mL×1 瓶	2-8℃保存
NAD 标准品	粉剂×1 支	-20℃保存
NADH 标准品	粉剂×1 支	-20℃保存

溶液的配制:

1、NAD 标准品: 临用前加入 1.5mL 蒸馏水,即 2μmol/mL。-20℃可以保存 2 周。

2、NADH 标准品: 临用前加入 1.4mL 蒸馏水, 即 2μmol/mL。-20℃可以保存 2 周。

产品说明:

辅酶 I 包括还原型和氧化型两种形式,在生物氧化中起传递氢的作用。氧化型辅酶 I 又称烟酰胺腺嘌呤二核苷酸(NAD+)是脱氢酶的辅酶,它在糖酵解、糖异生、三羧酸循环和呼吸链中发挥着不可替代的作用。中间产物会将脱下的氢递给 NAD,使之成为 NADH(还原型辅酶 I)。而 NADH则会作为氢的载体,在呼吸链中通过化学渗透偶联的方式,合成 ATP。NAD(H)在机体内有重要的生理意义,与物质代谢、能量代谢、抗细胞衰老、抗氧化以及一些疾病的发生密切相关。体内辅酶 I 含量降低会导致细胞损伤或衰亡。

分别用酸性和碱性提取液提取样本中 NAD+和 NADH,在 1-mPMS 作用下,WST-1 可与 NADH 反应,产生水溶性 formazan,在 450nm 下有特征吸收峰,而 NAD+可被乙醇脱氢 酶还原为 NADH,进一步采用 WST-1 检测。

注意:实验之前建议选择 2-3 个预期差异大的样本做预实验。如果样本吸光值不在测量范围内建议稀释或者增加样本量进行检测。

需自备的仪器和用品:

可见分光光度计、低温离心机、水浴锅,研钵/匀浆器、超声破碎仪、可调式移液器、1mL玻璃比色皿、冰和蒸馏水。

操作步骤:

一、样本处理(可适当调整待测样本量)

1、血清(浆)中 NAD+和 NADH 的提取:

NAD***的提取**: 建议取 0.1mL 血清(血浆),加入 0.5mL 酸性提取液,煮沸 5min(盖紧,以

防止水分散失);冰浴冷却后,10000g,4℃离心10min;取200μL上清液,加入200μL 碱性提取液使之中和;混匀,10000g4℃离心10min,取上清,冰上待测。

NADH 的提取: 建议取 0.1mL 血清(血浆),加入 0.5mL 碱性提取液,煮沸 5min(盖紧,以防止水分散失);冰浴冷却后,10000g,4℃离心 10min;取 200μL 上清液,加入 200μL 酸性提取液使之中和;混匀,10000g4℃离心 10min,取上清,冰上待测。

2、组织中 NAD+和 NADH 的提取:

NAD⁺的提取: 建议取 0.1g 组织质量,加入 0.5mL 酸性提取液,冰浴研磨,煮沸 5min(盖紧,以防止水分散失);冰浴冷却后,10000g,4℃离心 10min;取 200μL 上清液,加入 200μL 碱性提取液使之中和;混匀,10000g4℃离心 10min,取上清,冰上待测。

NADH 的提取: 建议取 0.1g 组织质量,加入 0.5mL 碱性提取液,冰浴研磨,煮沸 5min(盖紧,以防止水分散失);冰浴冷却后,10000g,4℃离心 10min;取 200μL 上清液,加入 200μL 酸性提取液使之中和;混匀,10000g4℃离心 10min,取上清,冰上待测。

3、细胞或细菌中 NAD+和 NADH 的提取:

NAD·的提取: 先收集细胞或细菌到离心管内,离心弃上清,建议 500 万细胞或者细菌加入 0.5mL 酸性提取液,超声波破碎(冰浴,功率 200W,超声 3s,停 10s,重复 30 次),煮沸 5min(盖紧,以防止水分散失);冰浴冷却后,10000g,4℃离心 10min;取 200µL 上清液,加入 200µL 碱性提取液使之中和;混匀,10000g4℃离心 10min,取上清,冰上待测。 NADH 的提取:建议 500 万细胞或者细菌加入 0.5mL 碱性提取液,超声波破碎(冰浴,功率 200W,超声 3s,停 10s,重复 30 次),煮沸 5min(盖紧,以防止水分散失);冰浴冷却后,10000g,4℃离心 10min;取 200µL 上清液,加入 200µL 酸性提取液使之中和;混匀,10000g4℃离心 10min;取 200µL 上清液,加入 200µL 酸性提取液使之中和;混匀,10000g4℃离心 10min,取上清,冰上待测。

二、测定步骤

- 1、分光光度计预热 30min 以上,调节波长至 450nm,蒸馏水调零。
- 2、NAD 标准品: 用蒸馏水稀释为 0.3125、0.15625、0.078、0.039、0.019、0nmol/mL 的标准溶液。0nmol/mL 即为空白管(A 空)。
- 3、NADH 标准品:用蒸馏水稀释为 0.625、0.3125、0.15625、0.078、0.039、0.019、0nmol/mL 的标准溶液。0nmol/mL 即为空白管(A 空)。

4、稀释表:

序号	稀释前浓度(nmol/mL)	标准液体积(µL)	蒸馏水体积(µL)	稀释后浓度(nmol/mL)
1	2000	10	990	20
	20	30	930	0.625
2	0.625	400	400	0.3125
3	0.3125	400	400	0.15625
4	0.15625	400	400	0.078
5	0.078	400	400	0.039
6	0.039	400	400	0.019
7	0	0	400	0

5、在 EP 管中按顺序加入下列试剂:

试剂名称(µL)	对照管(A1 、A1 ′)	测定管(A2 、A2 ′)	标准管(A 标)
上清液	50	50	
标准品	-	-	50
试剂五	500	-	-
试剂—	250	250	250
试剂二	75	75	75
试剂三	150	150	150
试剂四	35	35	35

充分混匀, 室温避光反应 1h					
试剂五	-	500	500		

混匀,450nm 下比色,读取吸光值,NAD+的记为: $\Delta A_{NAD} = A_2 - A_1$,NADH 的记为 $\Delta A_{NADH} = A_2$ '-A1',NAD 标准管的记为 ΔA_{AD} $_{\it k} = A_{\it k}$ - A 空白管。NADH 标准管的记为 ΔA_{NADH} $_{\it k} = A_{\it k}$ - A 空白管。(标准曲线只需做 1-2 次,每个测定管需设一个对照管)

三、NAD+和 NADH 含量计算

1、标准曲线绘制:

(1) NAD+标准曲线的绘制:

根据标准管的浓度 $(x_1, nmol/mL)$ 和吸光度 ΔA 标准 $(y_1, \Delta A$ 标准),建立标准曲线。根据标准曲线,将 ΔA 测定代入方程得到 $x_1(nmol/mL)$ 。

(2) NADH 标准曲线的绘制

根据标准管的浓度(x_2 , nmol/mL)和吸光度 ΔA 标准(y_2 , ΔA 标准),建立标准曲线。根据标准曲线,将 ΔA 个人方程得到 x_2 (nmol/mL)。

2、NAD+和 NADH 含量计算

- (一) NAD+含量计算
- (1) 按液体体积计算: NAD+含量(nmol/mL)=x1×(V 提取+V 血清)÷V 血清=11×x1
- (2) 按样本蛋白浓度计算 NAD+(nmol/mgprot)=x1×V 提取÷(V 提取×Cpr)=x1÷Cpr
- (3) 按样本鲜重计算 NAD+含量(nmol/g 质量)=x1×V 提取÷W=x1÷W
- (4) 按细胞数量计算: NAD+含量(nmol/104cell)=x1×V 提取÷500=0.002×x1
- (二)NADH 含量计算
- (1) 按液体体积计算: NADH 含量(nmol/mL)=x2×(V 提取+V 血清)÷V 血清=11×x2
- (2) 按样本蛋白浓度计算 NADH(nmol/mgprot)=x2×V 提取÷(V 提取×Cpr)=x2÷Cpr

- (3) 按样本鲜重计算 NADH 含量(nmol/g 质量)=x2×V 提取÷W=x2÷W
- (4) 按细胞数量计算: NADH 含量(nmol/104cell)=x2×V 提取÷500=0.002×x2

V提取:加入提取液体积,1mL; V血清:血清(浆)体积,0.1mL; Cpr: 样本蛋白质浓度,

mg/mL; W: 样本质量, g; 500: 细菌或细胞总数, 500万。

2. 注意事项:

- 1、反应过程中注意避光。
- 2、如果测定吸光值超过线性范围吸光值,可以增加样本量或者稀释样本后再进行测定。同步修改计算公式。

实验实例:

1、NAD+的测定: 称取 0.1g 冬青叶片,按提取步骤提取后按照测定步骤操作,玻璃比色皿测得吸光值后计算ΔA测定=A测定-A对照=0.113-0.089=0.024,标准曲线y1=0.5982x+0.0038,根据标曲得出x1=0.034,NAD+含量得:

NAD+(nmol/g 质量)=x1÷W=0.34nmol/g 质量。

NADH 的测定: 称取 0.1g 冬青叶片,按提取步骤提取后按照测定步骤操作,玻璃比色皿测得吸光值后计算 Δ A 测定 = A 测定 - A 对照 = 0.250-0.168 = 0.082, 标准曲线 y_2 = 0.4452x - 0.0008,根据标曲得出 x_2 = 0.186, NADH 含量得:

NADH(nmol/g 质量)=x2÷W=1.86nmol/g 质量。

2、NAD+ 的测定: 称取 0.1g 小鼠肝脏,按提取步骤提取后按照测定步骤操作,玻璃比色皿测得吸光值后计算ΔA测定=A测定-A对照=0.068-0.045=0.019,标准曲线y1=0.5982x+0.0038,根据标曲得出 x1=0.025, NAD+含量得:

NAD+(nmol/g 质量)=x1÷W=0.25nmol/g 质量。

NADH 的测定: 称取 0.1g 小鼠肝脏, 按提取步骤提取后按照测定步骤操作, 玻璃比色皿测

得吸光值后计算ΔA测定=A测定-A对照=0.217-0.118=0.099,标准曲线 y₂=0.4452x-0.0008,根据标曲得出x₂=0.224, NADH含量得:

NADH(nmol/g 质量)=x2÷W=2.24nmol/g 质量。

3、NAD+的测定: 取 0.1mL 马血清,按提取步骤提取后按照测定步骤操作,玻璃比色皿测得 吸光值后计算 Δ A 测定 = A 测定 - A 对照 = 0.113-0.074=0.039,标准曲线 y₁=0.5982x+0.0038,根据标曲得出 x₁=0.059, NAD+含量得:

NAD+(nmol/g 质量)=x1÷W=0.59nmol/g 质量。

NADH 的测定:取 0.1 mL 马血清,按提取步骤提取后按照测定步骤操作,玻璃比色皿测得吸光值后计算 ΔA

测定=A 测定-A 对照=0.120-0.097=0.023,标准曲线 y₂=0.4452x-0.0008,根据标曲得出 x₂=0.053,NADH 含量得:NADH(nmol/g 质量)=x₂÷W=0.53nmol/g 质量。